February Higher Maths Calendar \#abitofmathseveryday
1 Find the centre and radius for the circle
$x^{2}+y^{2}-14 x-2 y-31=0$.

$$
x+y-14 x-2 y-31=0
$$

$$
7 \text { Show that }(x+5)
$$

is a factor of

$$
x^{3}+13 x^{2}+31 x-45
$$ and hence factorise it fully.

13 simplify the

 following logarithmic expression;$4 \log _{9} 3-2 \log _{9} 3$
19
A recurrence relation is defined as
$u_{n+1}=3 u_{n}-2$. If $u_{2}=19$, calculate u_{0}.

25 Triangle $A B C$ has vertices $A(-4,-3), B(-2,7)$ and $C(6,-1)$. Calculate the equation of the median from B.

2 The line through $(2,-1)$ and $(4, x)$ has a gradient of 4 . What is the value of x ?

8

Calculate the inverse function, $f^{-1}(x)$, for; $f(x)=6 x-1$.

14 If A is an acute angle with $\tan A=\frac{2}{3}$ find the exact value of $\sin 2 A$. 20 state the equation of the graph of the inverse function for $y=\log _{7} x$.

26 The quadratic 26 equation $2 x^{2}-3 x+k=0$ has real roots. What are the range values of k ?

3 Find the equation of the tangent to the curve $y=x^{3}+3 x^{2}$ where $x=-2$.

9	10

F Find the limit of the recurrence relation

$$
\begin{aligned}
& \text { Write } \\
& y=2 x^{2}-8 x+7
\end{aligned}
$$

in the form
$y=a(x+b)^{2}+c$.

15 Find the point of intersection between the lines
$y=5-3 x$ and
$y=1-x$

21

Differentiate with respect
to $\mathrm{f}(x)=\frac{x^{2}+2}{\sqrt{x}}$.
27
Find the shaded area
$y=x^{2}$

4 Find the limit of the recurrence relation $u_{n+1}=\frac{1}{3} u_{n}-6 .$		6 show that $E(-1,0,1), F(2,6,7)$ and $G(6,14,15)$ are collinear and find the ratio in which F divides EG.
10 Solve the equation $\sin 2 x=\sqrt{3} \sin x$ for $\pi \leq x \leq 2 \pi$	11 Express $\cos x^{\circ}+\sin x^{\circ}$ in the form $k \sin (x+a)^{\circ}$ where $k>0$ and $0<a<360$.	12 Differentiate the following: $\sin ^{4} x$
16 A curve for which $\frac{d y}{d x}=3 x^{2}+1$ passes through the point (-1, 4). Express y in terms of x.	17 show that the line $y=3-2 y$ is a tangent to the circle $x^{2}+y^{2}+8 x-2 y+12=0$ and find the coordinates of the point of contact.	18 Calculate the coordinates of the stationary points on the curve $y=3 x^{3}-9 x^{2}+15$ \& determine nature.
22 Calculate the size of the angle that the line $y=4-x$ makes with the positive direction of the x-axis.	23 For the equation	24 State any restrictions on the domain for the function: $h(x)=\frac{x+8}{x^{2}-x-12}$
28 Calculate the size of the angle between the vectors $\underline{\boldsymbol{c}}=\left(\begin{array}{c}3 \\ 4 \\ -1\end{array}\right)$ and $\underline{d}=\left(\begin{array}{l}5 \\ 1 \\ 0\end{array}\right)$		

