

February 🛓 igher Maths Calendar

#abitofmathseveryday

1 Find the centre and radius for the circle $x^2 + y^2 - 14x - 2y - 31 = 0.$	2 The line through (2, -1) and (4, x) has a gradient of 4. What is the value of x?	3 Find the equation of the tangent to the curve $y = x^3 + 3x^2$ where $x = -2$.	4 Find the limit of the recurrence relation $u_{n+1} = \frac{1}{3}u_n - 6.$	5 What are the values of a, $y = a \sin bx^\circ + c$ b -4 -10^+ $\pi^- x$ c?	6 Show that E(-1, 0, 1), F(2, 6, 7) and G(6, 14, 15) are collinear and find the ratio in which F divides EG.
7 Show that $(x + 5)$ is a factor of $x^3 + 13x^2 + 31x - 45$ and hence factorise it fully.	8 Calculate the inverse function, $f^{-1}(x)$, for; f(x) = 6x - 1.	9 Write $y = 2x^2 - 8x + 7$ in the form $y = a(x + b)^2 + c$.	10 Solve the equation $sin2x = \sqrt{3}sinx$ for $\pi \le x \le 2\pi$	11 Express $cosx^{\circ} + sinx^{\circ}$ in the form $ksin(x + a)^{\circ}$ where $k > 0$ and 0 < a < 360.	12 Differentiate the following; sin^4x
 13 Simplify the following logarithmic expression; 4log₉ 3 - 2log₉ 3 	14 If A is an acute angle with tanA = $\frac{2}{3}$ find the exact value of sin2A.	15 Find the point of intersection between the lines y = 5 - 3x and y = 1 - x	16 A curve for which $\frac{dy}{dx} = 3x^2 + 1$ passes through the point (-1, 4). Express y in terms of x.	17 Show that the line $y = 3-2y$ is a tangent to the circle $x^2 + y^2 + 8x - 2y + 12 = 0$ and find the coordinates of the point of contact.	18 Calculate the coordinates of the stationary points on the curve $y = 3x^3 - 9x^2 + 15$ & determine nature.
19 A recurrence relation is defined as $u_{n+1} = 3u_n - 2$. If $u_2 = 19$, calculate $u_{0.}$	20 State the equation of the graph of the inverse function for y = log ₇ x.	21 Differentiate with respect to $f(x) = \frac{x^2 + 2}{\sqrt{x}}$.	22 Calculate the size of the angle that the line y = 4 - x makes with the positive direction of the x-axis.	23 For the equation y = k(x + a)(x + b), what are y the values of a, b and k?	24 State any restrictions on the domain for the function; $h(x) = \frac{x+8}{x^2 - x - 12}$
25 Triangle ABC has vertices A(-4, -3), B(-2, 7) and C(6, -1). Calculate the equation of the median from B.	26 The quadratic equation 2x ² - 3x + k = 0 has real roots. What are the range values of k?	27 $y = x^2$ Find the shaded area $y = 2x + 8$	28 Calculate the size of the angle between the vectors $\underline{c} = \begin{pmatrix} 3 \\ 4 \\ -1 \end{pmatrix}$ and $\underline{d} = \begin{pmatrix} 5 \\ 1 \\ 0 \end{pmatrix}$		